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ABSTRACT
“”)A simple physical model of residential energy consumption provides the
framework for an exploration of segmented regression models fit by least
squares. The energy model is a genergllzation of a linear, single change-
point model such as that considered by Hinkley (1971‘.
Some simple geometric measures of nonlinearity and nondifferentiability
are proposed. These measures are related to the construction of approximate

confidence regions for the parameters of a general segmented model. 1In

. ™~
Bates and Watts (1980) may be useful in analyzing continuously differentiable

addition, the relation shown between these measures and those proposed by

models.
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SIGNIFICANCE AND EXPLANATION

Simple procedures are presented for assessing the severity of non-

linearity in a regression model involving a function which is nondifferen-

tiable with respect to the unknown parameters. The nonlinearity measures
proposed indicate the validity of standard approximations which may be used to 2l
determine the accuracy of parameter estimates. The proposed measures are

related to existing measures of nonlinearity, but can be applied to a broader

class of models, and in some cases may be easier to calculate.

- The methods developed are motivated and illustrated by a simple model of

~3 ~ residential energy consumption. This model has been the basis for measure-

Ei ments of energy conservation in several studies.
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MEASURES OF NONLINEARITY
FOR SEGMENTED REGRESSION MODELS

;o Miriam L. Goldberg

1. Introduction.

N : The object of this paper is to develop the geometry of nondifferentiable
) least squares problems, and within that framework to indicate same simple
procedures for assessing the effects of nonlinearity. Our exploration of

e piecewise dlfferentiable regression models is based on a simple model which

g arises in the context of residential energy analyses. This model is a

. generalization of a linear change-point model.

o We begin by describing the motivating model. After reviewing some basic
elements of the geometry of nonlinear regressions, we then examine the
behavior of the residual sum of squares function for the energy model, and
relate this function to approximate confidence intervals for the unknown

parameters. Finally, we consider some measures of nonlinearity, which

indicate the validity of these approximations, and which are appropriate for
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nondifferentiable models. In addition, these measures may be useful for
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certain types of continuously differentiable models.
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r 2. The Enerqy Model

‘ A simple model of residential energy consumption assumes daily

{ consumption is constant at the baseload level a as long as the average

O
ety
SO 1N

. outdoor temperature T is above a reference temperature T, and increases :in
‘. proportion to T - T for T < T. With Y, representing average daily fuel

consumption for the N, days of month m, our model is expressed formally as

Y =a+BH(T) +¢ ’ (2.1)
3 m m m

.{n

e vhere N

b 1 Zm

: H (1) = — (t=?_.) 1(T . < 1) , (2.2)
R m Nn =1 mj wj

:rg I is the indicator function and € is a random disturbance. The variable

-~

n-(f) represents the average daily base-T degree-days for the month. The
i\ temperature T is interpreted as the maximum outdoor temperature at which the
f:_*‘ furnace is required to heat the house, and £ as the house's effective heat
. loss rate.

"".: Models of this type have been the basis for analyses of energy

:: consumption patterns in a large number of gas heated houses, and in a smaller
Y

"‘. Ps

- numbexr of oil- and electrically-heated houses. The consumption data Y, are
$ derived from a customer's fuel bills. The daily temperature data 'r_j, in
e
-'.:‘ integer degrees Farenheit, are obtained from a nearby U.S. Weather Bureau

< station (National Oceanic and Atmospheric Administration, monthly).

:-} Equation (2.1) has also been applied to aggregate data," with Yo

Q~.

’ representing fuel consumption per household for month m. For utility- or

' state-wide aggregates, a different definition of the degree-day variable

7

£,

g .

See, @.9., Pels et al (1981), Dutt, Lavine et al (1982), and Socolow (1978).
[ 1

See PFels and Goldberg (1982) and Goldberg and Fels (1982).
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B-(t) is used, to account for the lag introduced by meters' being read on f;}
different days throughout the month:

m o1
121 (N $1=3) (1T OT(T_ <T) + jZ1 IRy T ST .
H(T) = . (2.3)
m N N
m m=1
I m+-+ [ 3
3=1 3=1

For both single~house and aggregate analyses, the major use of the model
defined by Equation (2.1) is in determining the normalized annual consumption
T« The index I 4is given by

I = 365 (c+BH°(t)) (2.4)
where ﬂo(T) is the long-term (several-year) average of daily degree—days
base T.

If consumption data were available on a daily, rather than monthly,
basis, so that N‘ £ 1, Equation (2.1) would represent a simple change-point
regression with slope zero over one region. Such a model has been analyzed in
detall by Hinkley (1971). In addition to the swmmation in Bgquation (2.2) or
(2.3), a second important difference between the energy model considered here
and Hinkley's change-point model is in the restriction placed on the
temperature data Tij' as discussed below in Section 5.

For the energy model, we will consider estimation of the reference
temperature T, baseload a, and heating rate 8 by the method of least
squares. Placing the model in a more general context, we treat it as a
special case of a plecewise differentiable model. We will explore the
behavior of such models in the framework of general nonlinear models.
Naturally, many existing results for simple change-point models relate closely

to this problem. We will continually return to the energy model defined by

Equation (2.1) for illustratlon.
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Our emphasis is on methods for assessing the validity of approximate ]
confidence intervals for the model parameters. Two approximation methods are
considered. One is based on the asymptotic normality of the least squares . ;M"
estimates, and implicitly on a linearization of the model function. The other )
is based on the agymptotic chi-squared distribution of the likelihood ratio, ' if;
and ugses regions bounded by contours of constant Residual Sum of Squares ".4

(RSS). In developing methods for assessing the adequacy of these o

approximations, we will rely on the geometry of nonlinear least squares. E'-l:'j

3. The Geometry of Nonlinear least Squares

The geometrical approach has been developed extensively for continuously '_:;
differentiable models, and will be applied here to the general piecewise A
differentiable model. The general nonlinear model with unknown p~dimensional |
parameter 0 can be written in matrix form as

Y =n(6) + ¢ (3.1)

E(e) = 0 (3.2)

E(c’c) = 02 I . (3.3)
Hexre, Y, n, and € are n-dimensional vectors, such that “m' the mth oS
component of N, depends on observations x as well as on 6. We further
assume that the random disturbance € has a Gaussian distribution. WNote that
€ enters the model linearly; the nonlinearity is only in the model function n.

For the energy model given by Equation (2.1), © = [a,8,7,]' (with the
apostrophe denoting the transpose) and L

n(é) = at + BH(T), (3.4)
where H is the n-dimensional vector with components H, given by Equation

(2.2) or Equation (2.3) and 1 signifies an n-dimensional vector of ones.

The observations x, are vectors of daily temperatures ij‘
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For the general model, as © ranges over the parameter space O, the
function n(8) aweeps out a p~dimensional surface or “solution locus" L in
the n-dimensional sample space:

L= {n(0) : 6 e 6}.

We define the derivative vector ﬁ and the Hesslan matrix ﬁ; as

an
. =930 . |—=
MO = 367 " |78 '
i)nxp
ee a:Zn 32'1
n (Q)...._.n—- —— .
n 2620° 30 90
i jjpxp

{Throughout this paper an expression in square brackets indicates a matrix
with components given by the subscripted expression, such that m=1,2,...,n;
1,9=1,2,404,p)

The least squares estimate a is the solution to the normal equation

n*(8) (Y - n(e)) = o,

That is, the residual vector Y-n(a) is normal to the tangent plane at
n(a), the tangent plane being the linear span of the column vectors which
make up the matrix 5(9). In this sense, n(a) is the projection ;L of
Y onto the solution locus L. The estimate 0 is determined by pulling back
the projection n(s).' ;i to the parameter space ©.

To quantify the severity of departures from linearity, Bates and Watts
(1980) propose measuring the nonlinearity of a model in terms of the curvature

of the solution locus. For any direction v 1n the parameter space, the

tangent t, and acceleration vector a, at ® are defined by
tv = n(d)v (3.5)
a = [v'nm(ﬁ)v] nxi (3.6)

The curvature xv in the v direction is then defined as
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k. :'I' K = . ( 3 . 7)

v 2
It |
The relative curvature Yv is obtained by multiplying K, by the standard

radius Jpsz, where 32 is an estimate of the error variance 02. In the

present work, sz is always obtained from the residual sum of squares RSS

from the regression, as sz = RSS(6)/(n-p). Decomposing the acceleration

]
vector into components av and at, respectively parallel and normal to the

tangent plane, yields analogous definitions for tangential and normal

,iﬁ curvatures K: and Ki, and relative curvatures Y: and Yi.

}kﬁ Noting that the tangential acceleration component is caused by the

E?? parameterization chosen, while the normal component is independent of this

%ui choice, Bates and Watts refer to the parallel K: as the "parameter—-effects"”
.SE curvature, and to the normal xt as the “intrinsic” curvature. That is, the
'Eg acceleration component normal to the solution locus L describes the bending
E of the p-dimensional surface L in n-dimensional Buclidean space. The

;i; acceleration component parallel to the tangent plane simply reflects the

:§ meandering within the solution locus of the "lifted line"

N n, = {n(8+xv) : r e R},

}é The parameter-effects curvature can in principle be reduced or removed by
‘:3 an appropriate reparameterization (Bates and Watts, 1981). By contrast, we
i may consider a model to be intrinsically nonlinear with respect to the

Eé parameter Oj if the normal curvature (or acceleration) in the direction of
o 2

.;: Oj is nonzero. This is equivalent to requiring that the vector azn(e)/aej

(composed of the jth diagonal elemenis of the matrices ﬁ;(e)) does not lie in

:\ the plane spanned by the columns of ;\(9).
\
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4. Nonlinearity in the Enerqy Model. -
Many of the problems Introduced by nondifferentliability can be understood ;j
in terms of the general geometrical framework just described. For the energy '-ﬁ
model defined by Equation (2.1), the model function n is given by if
"
Equation (3.4). Thus, ]
. 3n 3n 9 '®
n(a,B,r) = [ '52' 3—2- 32 )| it
(4. 1) y:
= [1 | H(T) | BF(T)]. ]
-
- N
The degree~day derivative F is obtained by dropping the terms of the form ;j
‘@
(T - T.j) from Equation (2.2) or (2.3). For the single house, we have _,j
N R
m -

P () = ] 1, < .

" m Jj=1

That is, F is (arbitrarily) defined to be right-continuocus at discontinuity
points Tnj’ which occur only at integer Farenheit degrees. The step—
function F, is thus the empirical distribution function of outdoor
temperatures Tij for month m, and H; is the convolution of temperature
with F..
The Hessian ﬁ; for Equation (2.1) is given by
0 o 0
n (a8, =0 0 F_(1) . (4.2)
0 rm(t) eap_/ar
The only nonzero diagonal element is azn/a‘r2 = B3P/3t, which is a delta
function with spikes at discontinuity points of F (i.e., at integers). Thus,
the energy model is intrinsibally linear with respect to a and B, but

intrinsically nonlinear with respect to T. Between any two successive

integers, however, the model i{s also intrinsically linear in 1T, since f}

Bor/at = 0, Hence, the solution locus I (and in this sense the model) is .®

- plecewise planar. However, the model function n is nonlinear in £ as well

RN RPN L U W W WP WAL LI DU, B GV N S GRS S
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as In T, since azn/asar is nonzero. Thus, in addition to whatever intrinsic
nonlinearity results from the discontinuities in ¥(t), we expect to find

effects of nonlinearity in the parameterization.

5. Impact of Nonlinearities on Approximate Confidence Regions

Approximate confidence regions for a g-dimensional linear combination
CO based on the asymptotic normality of 6 are given by the set of ©
satisfying
2

F . (5.1)
q,n=p

(8-8)'c* {c* (n*m) e} e(e-0) < s

In Equation (5.1), ﬁ is the derivative evaluated at 8, % denotes a
probability, and r;,n-p the 1-1 quantile of the F-distribution with q
and n-p degrees of freedom. If the model function n is linear, the region
defined by Equation (5.1) has exact confidence level 1-7 even in finite
samples. The small-sample validity of such confidence regions is affected by
both parameter-effect and intrinsic nonlinearity.

By contrast, the sum—-of-squares based regions are unaffected by parameter

effects. For continuously differentiable gq-dimensional functions g,

such a region is the set of g(6) such that

RsS(?) - RSS(O) nop ¢ p" (5.2)
RSS(8) q a4-n7P

or RSS(0) < RSS(B) (1+ ——FpF" ). (5.3)
n~p q,n"p
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Note that confidence intervals for a single component 6 are obtained from

b
Equation (5.3) by taking g =1 and g(8) = 0

5°

The region defined by Equation (5.3) is the inverse image in the
parameter gspace O of the intersection of the solution locus L with a sphere
centered at Y whose squared radius is Rss(a)(1 + ;E; F;,n-p)° If the
solution locus is flat, the region determined by Equation (5.3) has exact
confidence level 1-7 in finite samples. Thus, the small-sample validity of
the sum~of-squares approximate confidence region depends on how sharply the
solution locus departs from the approximating tangent plane over the region of
interest.

For continuously differentiable models the use of confidence regions
based on Equation (5.1) or (5.2) is well-established. The asymptotic validity
of confldence regions defined by Equation (5.1) was proved by Fisher (1925),
and the validity of regions determined by Equation (5.2) by Wilks (1938).

For small samples, Beale (1960) proposed an inflation factor u for the

right-hand side of Equation (5.2) which yields a conservative confidence

region for the case q = p. Beale's factor u is given by

o g . Dntpt2) L
M} 1+ (m-p) p N . (5.4)

Bates and Watts (1980) showed Beale's nonlinearity measure Nl to be equal to

1
one quarter the mean square relative intrinsic curvature Y , and showed also

- that the factor U was very close to one for a wide variety of data sets.
2 For cases where the parameter-effects curvature is slight, Hamilton,
. Wwatts and Bates (1982) showed how to approximate the sum-of-squares region

given by Equation (5.2) using an elliptical region similar to that given by
Equation (5.1), but with a correction for the intrinsic nonlinearity. Bates
and watts (1981) suggested ways of choosing parameter transformations to

reduce the parameter-effects curvature, rendering the Gaussian approximation

~
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regions defined by Equation (5.1) more accurate. Bates and watts (1980)
indicated that the sum-of-squares regions may be considered relliable if the

intrinsic curvature Kl is small compared to 1/ ;;szrw , the normal-

P.n"p
based regions 1f the parameter-effects curvature RI is also small compared
to this quantity.

In using the approximate confidence regions defined by Equation (5.1) or
(5.2) for a plecewise differentiable model, we have two main concerns of a
theoretical nature. The first is to establish the asymptotic validity of
these confidence regions for our non-regular case. The second is to find ways
of assessing the geverity of both parameter—effects and intrinsic nonlinearity
for nondifferentiable models with finite samples. We will deal briefly with
the first concern before proceeding to our main purpose, the development of
nonlinearity measures for segmented models.

Hinkley (1969) proved the asymptotic normality of least squares estimates
for the simple change-point linear regression. His methods are not quite
applicable to the model defined by Equation (2.1), because the observations
(temperature data) for this model are taken only at certain fixed points
(integers), while Hinkley's proof assumes the observations may come
arbitrarily close to the change point. For the general piecewise
differentiable model with discontinuities in the derivative at fixed points,
the present author (Goldberg, 1982) has shown that the least squares estimates
are asymptotically normal, except when the true parameter value is at a point
of discontinuity; in that case, the normal approximation yields asymptotically
congervative confidence intervals.

The asymptotic normality justifies the use of sum-of-squares contours to
define likelihood regions. For higher confidence levels or for more strongly

skewed RSS functions, the likelihood approach should be more accurate, in the

-10-
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senge of giving regions with coverage probability closer to the nominal
level. Hinkley (1969) found empirically that for his model the likelihood-

based regions were indeed more accurate than the normal-approximation regions.

6. Visual Indicators of Nonlinearity

We turn now to the question of how to assess the severity of nonlinearity
in a particular small sample. We begin by considering some useful display
techniques.

One way to study the effects of nonlinearity in the energy model is to
examine the residual sum of squares RSS as a function of the "nonlinear®
parameter 1. If our model function N were linear in T, then RSS(T)
would be a quadratic function. Instead, we expect to see a more irregular
function, with kinks at discontinuity points of %%, that :is, at each integer
value of T.

Figure 1 shows a plot of RSS versus the change point T for a typical
data set fit to Equation (2.1).' Above the maximum and below the minimum
obgserved temperature ij, the function is flat, indicating that the reference
temperature T is not identifiable if it falls outside the range of the
temperature data. In the region of low T, where these data are very sparse,
we do see the somewhat jagged behavior anticipated. For similar change point
models, Hudson (1966) and Hinkley (1971) have also shown RSS curves of this
general shape, but with a more pronounced scalloped appearance.

Overall, and especially in the neighborhood of the minimum (i.e., in the

~

neighborhood of the least squares estimate T) the RSS function looks fairly

*

The data are for the the New Jersey Residential Gas Heating Sector,
August 1969-July 1970,

~
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‘Figure 1: Residual Sum of Squares RSS(T)
Versus Reference Temperature T.

RSS (1)

( (Th/cu-4d) 2)
140

120

QO =
g
° | T [ —
0 25 50 75 . 100

t (°p)

Based on a fit of Equation (2.1) to data for the state
aggregate, August 1969 - July 1970. The abbreviations
are Th for therms, cu for customer, and 4 for day.
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smooth, offering some hope that procedures which have been developed for T
[ continuously differentiable models may still be useful in the present
application.

In particular, in addition to the inference procedures which are the Gk
focus of the present work, fitting procedures for smooth models can be
extended to the model defined by Equation (2.1). The fitting procedure used e
in this study, discussed by Dutt, Fels et al (1982) and in more detail by the -
- present author (Goldberg, 1982), is based on Newton's method. This procedure
represents a modification of a method described by Hinkley (1969) for simple
change-point models, and in most cases is more efficient. t}

Figure 2 shows three residual-sum-of-squares curves. The first is the :

original curve RSS(T). The second Rss; is the residual sum of squares for

an approximate model function

n; (a,B,7) = at + B{H(k) + (T-k) F(k)}.

[ Y
Sttt

The function “k extends to the whole real line the planar function which

defines n(a,B8,T) in the integer interval [k,k+1] containing T. For any

v v
AR AN,

integer k, the approximation Rssk coincides with the original function RSS

for values of T in [k,k+1]. The curve RSS,., shown coincides with RSS in e
k R

the interval containing the minimum. The third curve shown is the guadratic .

AN

approximation RSSQ based on a linearization of the model function n. 20

5

d The discrepancy between the original RSS(T) and the extension RSS.(T)
= k
stems from the departure of the solution locus from the plane spanned by 1, ﬁ{

4 4.4

H(k), and PF(k). Thus, the divergence of RSS from RSS. is an indicator of "9
k .
. intrinsic nonlinearity. The discrepancy between RSS. based on the planar '

. k
. extension and RSSQ based on the linear approximation to the model function

" reflects parameter-effects nonlinearity. Both types of nonlinearity appear

from Pigure 2 to be slight.




-y AR I iU A S S IR S T i il vty A . -~ St A . . - -
. Figure 2: Residual Sum of Squares Function RSS, Extension

RSSE. and Quadratic Approximation RSSQ
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Another way to see nonlinearity is to examine two-dimensional projections
of the sum-of-squares regions defined by Equation (5.3). If the boundary of
such a projection is not elliptical, this is evidence of strong nonlinearity.
Figure 3 shows several such regions for parameters of the energy model, for
varying values of F:'g, for the data set displayed in the first two
figures. FPor small values of f:'g, corresponding to confidence levels of
0.99 or less (% » 0.01) the regions shown in Figure 3 all look fairly
elliptical. Only at rather high confidence levels, which are of little
practical interest, do the contours become appreciably distorted from the
elliptical ideal.

By itself, unfortunately, the shape of the sum-of-squares regions gives
only limited information about the nature of the nonlinearity. If these
regions are not elliptical, the Gaussian approximation (Equation (5.1)) is
clearly inadequate to give confidence regions. At the same time, interpreting
the sum-of-squares regions themselves as confidence regions (of the indicated
confidence level) may or may not be valid. The reason for this ambiguity is
that the distortion from the ellipse may reflect the shape of the solutién
locus 1L itself, (indicating strong intrinsic nonlinearity), or might simply
result from a nonlinear mapping between I, and the parameter space ©O
(parameter-effects nonlinearity).

Conversely, certain types of intrinsic and parameter-effects
nonlinearities will still yield elliptical contours. Thus, the breakdown of
either approximation (5.1) or (5.3) may not be manifest in simple examination
of regions such as those drawn in Figure 3.

Somewhat more informative is a comparison of the (projected) sum~of-
squares regions defined by Equation (5.3) with the elliptical regions defined

by Equation (5.1), for various values of . Here again, though, the
implications of the visual comparison are ambiguous. A particular effect may
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result either from the falling off of the solution locus from the tangent
plane (intrinsic nonlinearity) or from the distortion of coordinate lines
y within the plane (parameter-effect nonlinearity).

What such a comparison does reveal is how close the normal-theory regions
come to the sum—of-gquares regions, which in general are more reliable. The
two sets of confidence regions may be compared more conveniently by plotting

.3 for each parameter component the one-dimensional projections of the two

: regions onto the coordinate axis, as a function of Jr:,n-p' A set of such
plots for the parameters of the energy model is shown in Figure 4, for our
example data set.

Congistent with the indication from the previous figure, Figure 4 shows
that for confidence levels of practical interest, say 1-% < 0.999, the
\j Gaussian-based confidence intervals (indicated by 'N' for Normal) are in
good agreement with those based on the sum—of-squares methods for all three
parameters a, B, and T of the basic model. For the important index T,
the two sets of confidence intervals are in virtually perfect agreement even
for extremely high confidence levels. Thus, provided the sumof-squares
method gives accurate confidence intervals for this data set, the Gaussian
approximation also appears to be trustworthy.

The visual indicators just described are unsatlsfying in two major
respects. PFirat, they are only qualitative, giving no firm basis for
determining whether the Gaussian or sum—~of-squares regions are justified as
confidence regions. Secondly, they require evaluation of sum~of-squares
contours. In many cases, a justification for the normal approximation is

sought precisely because evaluation of sum—of-squares contours is difficult or

costly.
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Figure 4: Confidence Intervals for Parameters of the
Energy Model by the Gaussian Approximation (N)
and the Sum-of-Squares Method (S) for Various
Confidence Levels

4
a
e s (Th/cu-d)
90' 5101 i
]
N -
801 N 3.01 s =
::-‘:: 7% 1.0-4 N .?-
ST ' N :
.. N 4
T et 6& 1-0‘ .
_ . S
8 5 Ir"l ¥ I ! E— N 3-0'-"rrl I ¥ I T ! aamm— ] E
8 | r
(o‘rls:/cu-‘!'d) (1000 Th/cu-yr)
0. 51
::., ] 2.11 .
.'.‘;.:.' N,S .
e 0.4 s :
....,. N . 1'8. "~ ':‘
N 1" -
0.3 : X
e : 8 1.5 :
X : . N,S -
: 0-2] ' :
N 1.2
0.1 ) N
¢ 2 N 6 8 10 Y | I y %
5T T MR
1-x 08 [0.95'.99 0.999 1=y 0.8 [0.950.99 0,999
09 0's 09 logs

The factor t; = /é; 9° See caption to Figure 1.
’




I“

A A A Ay

N

.
AR A

A

FREIPN T

We address these difficulties in the remainder of this paper. First, in
Section 7 we introduce two simple quantitative measures of Intrinsic
nonlinearity which are particularly suitable for nondifferentiable models. We
then relate these measures to "effective curvatures” for segmented models, in
Section 8, and apply the effective curvatures to the energy model in Section
9. Finally, in Section 10, we suggest an alternate approach, which yields

effective parameter-effects as well as intrinsic curvatures.

7. Quantifying Nonlinearity

As noted previously, the small-sample validity of the approximate
confidence intervals determined by Equation (5.3) depends on how nearly planar
the solution locus L is over the region of interest. PFor the continuously
differentiable model, the intrinsic curvature Kt measures the departure from
the tangent plane in terms of the rate of change, normal to that plane, of a
tangent vector t,. For both segmented and smoother models, this departure can
be measured in other ways, two of which are considered in this section.

A direct measure of the departure from the plane is the distance A
between the tangent plane at n(s) and a point n(9) at the edge of the
region of interest - that is, for 0 1lying on a sum—of-squares contour as
defined by Equation (5.3). The gap is easily evaluated at a point n(6) as
the square root of the residual sum of squares from a regression of the secant
n(e) - n(s) on the derivative matrix ﬁ(a), which defines the tangent plane
at n(s). The solution locus may be considered "nearly planar®, and the sum~
of-gsquares region an adequate approximate confidence iInterval, if the gap A
is small compared to the radius of the sphere defining the region. is

radius, as given by Equation (5.3), is ¢ (1+£f)RSS(6), where
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f= qr' /(n-p). Alternatively, following Bates and Watts (1980), we may
q.n=p
simply compare the gap A with VfRSS(8), the radius of the sphere's
intersection with the tangent plane at n(0).
For each of 75 aggregate data sgets fit to Equation (2.1), the maximum gap

Auax was evaluated on the “"one-standard-error” contour defined by £ = 1/(n-p)

L

!a n=p = 1), for which 7f RSS(0) = s. The procedure used to
’

(Lie., g=1,
compute Amax is described below in Section 7. The ratio of Amax to

s = Jnss(a)/(n-a) ranged from 0.02 to 0.25, with a median of 0.08.

Thus, along this contour, the greatest departure of the solution locus from
the approximating tangent plane was typically less than 10% of the distance
from a point on the contour to n(s), and at worst was 25% of this

distance. On this basis, the planar approxima- tion appears to be reasonable
for most data sets arising for the energy model.

The gap A can be used as a measure of intrinsic nonlinearity for either
a segmented or a smooth model. Note also that the gap indicates the total
intrinsic nonlinearity in a particular direction, whether caused by a
continuous or a discontinuous change in the derivative n.

A second measure, which reflects the effect of nondifferentiability
alone, is the angle ¢ between the two limiting tangent planes at a point of
discontinuity of ﬁ. In the case of a piecewise planar model such as that
given by Equation (2.1), ¢ is simply the angle between planar segments. For
the general model with discontinuous derivative in T, we denote by U_ and
U,, respectively, the left and right-hand limits of %% at a point of
discontinuity, and by V the matrix of derivatives of n with respect to the

other parameters at that point. Then the angle at the discontinuity is given

by
(u_1v)' (U 1v)

lu_ivi Ju 1v|

cos (¢) =

=20~
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where the notation 1V denotes the component orthogonal to V.

For the same 75 aggregate data gets fit by Equation (2,1), the angle ¢

evaluated at the integers 1: and ):+1 bracketing the estimate ; ranged ..1
from 0.02 to 0.13 radians, with a median of 0.06 radians. These small angles fi
again indicate that the intrinsic nonlinearity is slight for this model. }E
However, the impact of the bend in the solution locus depends not just on the ;ia

magnitude of a single bend, but also on how many bends there are in a region

of interest.

Certainly other direct measures of nonlinearity could be considered for

segmented models. The appeal of the two proposed here will emerge as we

proceed.

8. Effective Curvature Measures for Segmented Models

The measures described in the previous section allow us to associate
nurebers with nonlinearity, but still leave us with the question of what the
numbers mean. How small must the gap A or angle ¢ be for the intrinsic
nonlinearity to be considered negligible? As noted above, the angles ¢, and
the spacing between points of discontinuity ﬁ together indicate the severity
of intrinsic nondifferentiablity. The present author (Goldberg, 1982) has

related the angles and spacing to the shape of the observed likelihood

function, and to the performance of fitting procedures. For purposes of
inference, however, we are concerned with the total intrinsic nonlinearity.
Hence, we focus now on the gap 4, which incorporates both instantaneous and
continuous changes in the derivative ﬁ.

By considering the relation of the gap A to the intrinsic curvature, as
defined by Equation (3.7), for smooth models, we will obtain an expression for

the effective curvature of segmented models. Effective curvatures make it "!§
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possible to think of such models in the same terms as the more familiar smooth
models.

In the smooth case, we can approximate the geodesic curve from n(9)
to n(a) by a parabola centered at n(s), as illustrated in Figure 5.

A parabola defined by Y, = cyf

jal - 1[0,2¢]']
€12 j11,01012

= 2¢

has curvature at Yy =0 given by

The curvature at the center can therefore be determined from any point
(yqsYy) of the parabola.

For the parabola which ideally represents a cross-section of the solution
locus, y, and y, correspond respectively to the tangential and normal
components of the secant n(f8) - n(s). Thus, denoting by P the projection
matrix onto 6(3), and by [(6) the secant n(6) = n(a), we have

1. I-P)z(6

K =22 5
IPz(6)|
(8.1)

2A
1Pz (0)|2

1. 2/2:5 A
2

Hence ) . (8.2)
1Pg(0)]

To complete the connection between intrinsic curvature Kl and the
direct measure of intrinsic nonlinearity 4, it is necessary to specify the
direction v associated with Kl as given by Equation (3.7). This direction
is simply the coordinate with respect to ﬁ(s) of the projection onto the

tangent plane of the secant [{(9).

.22~
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Thus, for a given point n(8), the squared gap A2 at n(d) is the
residual sum of squares from a regression of (6) on ﬁ(é), while the
direction v is given by the coefficients of this regression. Further, the
multiple correlation for the regression is the cosine of the angle ® between
the seéant 7(6) and the tangent plane defined by 8(5). For a piecewise
planar model, such as the energy model, the angle ¢ defined above can be
related to this secant angle ®. Specifically, whenever n{(0) and n(a) lie
on adjacent planar segments, the angle ¢ represents an upper bound on the
secant angle ® in the direction v.

It is important to note that the direction v, which indicates the line

in the tangent plane pointing toward n(6), will not in general coincide with

@ - 8. The reason is that the sample-space image of the parameter-space

segment 68 is in general a curve, not a straight line. Thus, the vector

te_s = 5(9-9), which is the tangent at © to the curved image of 606, does

not point toward n(8).

-~

A more precise relationship between v and 6 - 6 is determined by

expanding n(6) about 0. We have
£(8) = 7(0-6) + (% )[(6-8)'R_(6-0)] ,

so that

~ [ -qe I .
vz0-0+ (%rmm ntag o, (8.3)
with a;_a the tangential component of the acceleration as defined by

Equation (3.6). The difference between v and 6-6 is thus closely related

"

to the parameter-effects curvatures. Recall that the gap A and the secant
angle ® themselves measure intrinsic nonlinearity only.

For a smooth model, Equation (8.1) or (8.2) can be regarded as an
approximation to the actual curvature. For a segmented model, we will take

these equations as the definitions of effective curvatures K and Y. In the
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latter case, the effective curvatures so obtained will depend strongly on the

size of the regions of interest and on the proximity of 6 and 0 to a

- discontinuity point of i. One may question the value of a curvature measure x!{
iz which is so sensitive to the points chosen for its evaluation. 1In fact, ;:?
\ : L
lﬁ however, such a dependence is entirely appropriate for nondifferentiable ';;5
: —

models. “'.

Nondifferentiability means that a single number indicating a local rate L
of change (i.e., a derivative or curvature) does not adequately represent more
global behavior. Describing nonlinearity in terms of curvature amounts to
t approximating the solution locus L by a spherical or parabolic surface, E;S
é which coincides with L at the point of the fit. For a smooth model, the o
same approximation is valid over a wide range, essentially until the second- 2
order expansion of the model function n breaks down. For the segmented
; model, on the other hand, a different smooth approximation is relevant
depending on the width of the region of interest. For inferences in a close
neighborhood of a discontinuity point 90, it is wise to consider a surface

of small radius of curvature, which approximates L well in that

ML ALAL BT

neighborhood. For inferences over a wider region, a sphere of larger radius,
é which might be relatively far from L in the immediate vicinity of Oo,
would be more appropriate.

To apply Beale's formula (Equation (5.4)), the root mean square intrinsic s
relative curvature ths is required, while to use the methods of Bates and
Watts (1981), Hamilton, Watts and Bates (1982), or Box (1971) requires the "
entire acceleration array [a;]. Thus, the approximation given by Equation . R
(8.2), which provides estimates of the relative intrinsic curvature in a ‘
particular direction, still leaves much work to be done if the procedures

"o

which make the concept of curvature so appealing in general applications are

to be used.
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i In many cases, however, nonlinearities are slight, so that the

a‘ corrections offered by these procedures are negligible. In particular, the
{ experience of Bates and Watts (1980) indicates that the relative intrinsic

iﬁ nonlinearity of most models is gquite small. Thus, a quick method of

;i establishing that the maximum relative intrinsic curvature is sufficiently

small could frequently obviate the need for more complicated computations.

R
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N

o
222 e

This is the approach taken below in applying effective curvature measures to

the energy model.

L A

A
l‘\ .
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Sﬁ 9. Effective Curvature of the Energy Model

zg Above, we have seen several indications that the nonlinearities in the
xi energy model are slight: the small discrepancies among the RSS functions in
E? Figure 2, the close correspondence between the Gaussian and sum—of-squares

_ts confidence intervals in Figure 4, the mild tangent angles ¢, and the small
o ratios Ahax/' of the gap to the radius of a sum—of-squares region. Hence,
:s to determine that the Gaussian approximation is adequate, it should be

Ei sufficient in most cases to verify that the maximum curvatures are small. In
{}; this section, we consider only the intrinsic curvature Yl.

”Ei Appendix A describes how the maximum effective intrinsic curvature Y:ax
?: can be found for the energy model, on a sum—of-squares contour defined by

- Equation (5.3). Using the approximation given by Equation (A.1) for the

?% case F;,n-p = 1, Equation (8.2) yields

~ -

; v ’EJP—A"—‘L" . (9.1)
s | max 8

b

Cs

The results in Section 7 on the ratio Amax/s of the maximum gap to the
radius of a one-standard-error sum-of-squares region can now be translated

into statements about effective curvatures for the energy model. For the 75




-

-8 o)

-~ 1 ]
NS data sets, the maximum (effective) relative intrinsic curvature Yuax ranges B
-~ :
- from 0.07 to 0.85, with a median of 0.29.

-
( . When the second-derivative array {(n] has only one non-zero vector, on

the diagonal, it is possible to show that the root mean square curvature
les and the maximum curvature 7max are related by

3
ms pip*2) Y-ax

Y . (9.2)

For the energy model, with n given by (3.4), the normal component of (n)

has a single non-zero vector, the orthogonal component of aznlatz = BIFP/3T.
It is therefore possible to evaluate Beale's inflation factor u, given by

o (5.4),knowing the effective intrinsic curvature Y:ax only in the direction

. of maximum curvature.

;: For the worst case then (Y:.x = 0,85), BEquation (9.2) yields an

R inflation factor U = 1.08, while for the median value (Y:ax = 0.29) we get
) u= 1,01. Thus, if Beale's formula holds approximately in the non-
differentiable case, with the effective relative intrinsic curvature defined
by (8.2), then the correction regquired to make the sum—-of-squares regions

- (5.3) conservative is minimal in most cases. In fact, the factor u is

greater than 1.03 for only two of the 75 cases studied.

10. Smoothing the Model Function

The effective curvatures defined for segmented models by Equations (8.1)
and (8,2) are based implicitly on an approximation to the solution locus L

': by some smooth surface. Another approach is to approximate the model function
n explicitly over the region of interest by a smooth function n, then

consider the curvature of n. Obviously, is procedure provides both

DMONONEAD &-

parameter-effect and intrinsic curvatures.

3

-
0
s
.
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3 The approximation method must be left as an ad hoc procedure to be chosen :i}
3 for the particular model studied, and in general will involve considerably ;53
{ more computation than the measures suggested above. On the other hand, the ——:
3 curvature of a close smooth approximation is arguably the best definition of ?Ef
j curvature for a segmented model. Furthermore, if the same approximation ; o

applies over a wide range of values of 0O, then the curvature array may need
to be evaluated only once for all confidence levels of interest.

f In the case of the energy model, a very close approximation to the model
function was obtained for each data set by smoothing the nondifferentiable

degree-day variable H(T). For each month m, a smooth function En(t) was

.
LR AN

t‘.

obtained by fitting a quadratic function
~ ~ 02
um(ti) = Hm(t) + bh(ti-T) + cm(ri-t) + e, - (10.1)

The coefficients b, and Cm in Equation (10.1) were found by the method of least

Y

squares, using values Ti =T +%k, k=-5,-4,...,4,5.

Figure 6 shows the actual and smoothed degree~days for each month m,

§ from August 1969 to July 1970, obtained by this procedure with ; set equal
i to 65°F. The figure shows that the approximation Em is quite close to the
- actual H,, not only over the range of the fit, but also considerably

i beyond. Table 1 shows the results of the regressions for the twelve months.

The Rz values are quite high in all cases. In addition, the coefficient

~

is generally very close to the derivative Fm(T), 80 that the derivative

a

P
E (1) is also close to the derivative of the original function. In all data

m
sets studied, the least squares estimates [ found by using the approximation

;(G,B,T) = af + BE(T) were also quite close to the original estimates 6

~ ~

- corresponding to the true model; the differences ej-ej were found to be on

LY

- the order of 10% of the standard errors of 6,.

P 3
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Figure 6: Heating Degree-Days H and Smooth Approximation
H Versus Reference Temperature <.

Hp (1)
(°r-a/4) Month m

ss.o ¢o.8 ¢s.0 70.¢ 75.0

';"——Range of Fit——>:

t (°F)

Actual degree-days H, are indicated by '+', the approximations
by the continuous curves. The fits are for aggregate degree-
days, defined by Equation (2.3), August 1969 -~ July 1970.
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Pigure 7 shows a plot of the maximum effective relative intrinsic
curvatures Y:ax' computed from the gap A using Equation (9.1), versus the
relative intrinsic curvatures ;iax for the smoothed model function n. The
figure shows a weak, positive relation between the two curvature measures over
the 75 data sets. However, the formal curvature ;:ax for the smoothed model
is almost always larger than the effective curvature Y;ax derived from the

gap Amax' Evidently, then, for © at a distance of one standard error from

0, (where the gap A was evaluated) the original function n tends to be
closer to the tangent plane at n(8) than is the approximation n.

The disparity between the two measures Y:ax and ;:ax does seem to

depend on the standard error of T, which determines how many bends in the

solution locus occur between © and the point 6 where the gap Anax was

evaluated. In general, the larger disparities are associated with larger
1

standard errors (around 3°F), while for the data sets for which Ymax and
;iax are roughly equal the standard error of T is relatively small (less

than or equal to 1°F).

The curvatures ;iax computed for the smooth model 3 not only tend to
be larger than the effective curvatures Y:ax based on the gap, but are also
more spread out. The gap~based effective curvature Y:ax is derived from a
single point n(9), where the value of T corresponding to that point is
anywvhere from one to three (or in one case seven) degrees from ;, and each
degree represents a point of discontinuity of ﬁ. It is therefore somewhat
surprising that smoothing n over ten integer values of T yields a measure
;:ax which is more erratically behaved than that based on the gap. Whatever
the reason for this behavior, the relatively large values of ;:ax found for
a few data sets serve as a warning that at some confidence levels the impact

of intrinsic nonlinearity may be greater than is indicated by the gap

evaluated on a one-standard-error sum-of-squares contour.
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Figure 7: Effective Relative Intrinsic Curvaturel y'L
Versus Relative Intrinsic Curvature vy <

of the Smoothed Energy Model e
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As discussed above, it may not make sense to try to describe the shape of

a piecewise differentiable surface in terms of the curvature of a single 3

—

quadratic approximation. Even though the approximation 7\ is quite close to L)

the original function n, the correspondence between the two functions must
vary with distance, as well as direction, from n(a). Whether the

approximation ?l, and its curvatures, can be considered adequate to describe ;:

the behavior of N depends, of course, on the degree of precision required.

The ratio ;:ax/Y:ax of the two measures is less than two for most of the
data sets, and is greater than four for only two.

The approximation 3 also offers a measure of parameter-effects
curvature ;'. Unfortunately, there is not simple way to determine the
direction v in which ?: is maximized. However, as explained in Appendix
A, a good indication of the strength of parameter effects is given by ;: for
v = [-B;,0,1]', corresponding to t, = gBrFr 1 1.

For the 75 data sets studied here, ;: for this direction ranged from
0.1 to 1.4, with a median of 0.2, The small median value indicates that
parameter-effects nonlinearities are slight in most cases. For the data set
used as an example throughout this paper, ;: = 0.46, which is the gsth
percentile of the 75 observed values. Thus, for most data sets, the
parameter-effects nonlinearities appear to be smaller than was seen for the
example data set. As a result, the Gaussian approximation may typically be

expected to perform as well or better than 1is indicated in Figure 4 over that

range of confidence levels.

11. Conclusion
We have presented several methods for examining nonlinearity in awkward
models. Although the primary focus has been a segmented model, the visual

indicators and the curvature measures proposed may also be used for
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continuously differentiable models. The visual indicators can reveal a great
deal about the behavior of the model function, but computation of the required
quantities may be quite cumbersome. By constrast, the quantitative measures
proposed may be easier to compute than formal curvatures based on second

derivatives. In addition, in cases where the sccond-order approximation does

not hold over an entire region of interest, an effective curvature based on
points at the edge as well ag the interior of that region may be more
meaningful than the formal curvature evaluated at the point of the fit.

For the energy model which motivated this study, all the measures
explored indicate that the nonlinearities are generally small for data sets
like those examined in this work. The intrinsic nonlinearity, as measured by
the tangent angle ¢ and by approximate curvatures, is small enough that the
sum-of-squares method gives good approximate confidence regions. A
combination of direct comparisons of Gaussian and sum—of-squares regions (for
a particular data set) and examination of parameter-effect curvatures ;.
(for a large number of sets) leads to the conclusion that the more easily
computed Gaussian approximation should be acceptable in most cases.

Purther study is needed to assess the performance of the effective
curvature measures proposed here, for a variety of segmented and smooth
models. In this context, both the validity of the approximations and the
degree to which these methods actually facilitate computations are
important. Also useful would be efficient means of finding the maximum
intrinsic or parameter-effects curvature, on the basis of which more detailed
computations might be forgone. A paper currently in preparation describes
procedures for obtaining mean square effective curvatures, both intrinsic and
parameter-effect, based on methods developed here, with an emphasis on

applications to smooth models.
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Appendix A. Finding Maximum Curvatures for the Energy Model

For the energy model defined by (2.1), the maximum intrinsic curvature at
8 = [a,B,T]' is in the direction of F(1) 1l (1,H(T)], the component of
F(T) orthogonal to the vectors 1 and H(T). The formal curvature ;

was therefore evaluated in the direction of F(}) 1 [1,H(;)], using the

.e
~

estimate T and the second derivative n for the smoothed model function

~

n. Finding the effective curvature Y:ax in the corresponding direction for
the original model is more complicated; as noted in the text, evaluating the
gap A at n(8+v) does not in general yield the effective curvature Ki in
the desired direction v. Rather than searching for points on the sum-of-
squares contour in the indicated direction, a more ad hoc procedure was used
to find Amax'

To find the maximum gap A around the sum~of-squares contour, it ie
necessary to maximize the residual sum-of-squares from the regression of
n(g) - n(6) on 6(8). For the energy model, this is a regression of
(a=3)1 + BH()-BH(T) on [1,H(T),BF(T)]. The terms (a-a)! and BH(T)
leave no residual, while B is a scalar. Hence, maximizing the residuval from
a regression of H(T) on [1,H(;), BF(;)], then multiplying by B+, the

maximum of £ along the contour, yields an overestimate of the maximum gap

Amax' The maximal divergence of H(T) fyrom the H(T) - B8F(T) plane occurs

A

at values of T farthest from T. Thus, the maximal gap was found by
finding the extreme values T and T+ along the contour, obtaining the
residuals from regressions of H(T-) and H(t+) on [1,3(2), BF(;)], then
multiplying the larger magnitude residual by B+.

Having obtained (overestimates of) the maximum gap, we still need the

tangential secant component |P{(8)| to derive effective curvatures from

Equation (8.1) or (8.2). According to the linear approximation,
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::-_:' |PL(8)] = /£ RSS(0) for © on a contour defined by (5.3), with ".-_::
f = r; n_p/(n--l.'a). Making this approximation, Equation (8.2) becomes B
k"« ')

' Y2 /B . (A.1) ®,
F 8 ...1
q.n=p -
.;:1
s
The maximum parameter-effects curvature is also of interest. For the ;;j-]
~1
- parameter effects, only the formal curvature Y of the smoothed model is ".i
available. As noted in the text, there is no simple way to determine the -ftf:_

direction v in which ;:’ is maximized. We do know that the tangent j
- (ol
- vector t, must be orthogonal to 3n/da = 1, since the model function has :'J
B zero curvature in the a direction. In addition, it is clear from Equation
‘ (4.2) that the T-component of the maximizing v (hence the fAF-component =
of t,) must be non-gero. A reasonable measure of the strength of parameter '.4.
* ~ —-— .:"W
- effects is therefore offered by Y: for v = [-BF,0,1]', corresponding to S
- o
]
.3: j~‘-.'<
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